If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+18x-17=0
a = 3; b = 18; c = -17;
Δ = b2-4ac
Δ = 182-4·3·(-17)
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-4\sqrt{33}}{2*3}=\frac{-18-4\sqrt{33}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+4\sqrt{33}}{2*3}=\frac{-18+4\sqrt{33}}{6} $
| -86=-3c+4(5c+4 | | x=14x+61 | | v-2.5=9.49 | | (18+2x)(30+2x)=1120 | | -10x67=17 | | 14=6d+5 | | 16b+1=17 | | 50=25y | | -5n+1=-3n-7 | | 6v^2+60v+144=0 | | (x-7)(x+9)(x+4)=0 | | 3e+2e+10e=225e= | | 1+4(4-3w)=65 | | 2z^2-z-5=0 | | x-9/5=-5 | | -5v-4(v+6)=-69 | | 1/29x-11)=9 | | 60=5(a+1) | | 30+4x=-62 | | 2^x+2^(x+1)=96 | | 3m^2-147=0 | | -5y-4y-24=-69 | | 48+5g=68.50 | | 7/n+7=49 | | x+111+81+x=75 | | c-8=27 | | 2/5=d−2/4 | | r/–2+18=10 | | x+111+81+x=180 | | –8q+7=–7q+6 | | 4x^2+36x=-10 | | 2^x+2^x+1=96 |